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ABSTRACT
This paper presents a novel methodology for detecting colli-

sions of cylindrically shaped rigid bodies moving in three dimen-
sions. This algorithm uses line geometry and dual number alge
bra to exploit the geometry of right circular cylindrical objects
to facilitate the detection of collisions. First, the rigid bodies are
modelled with infinite length cylinders and a necessary condition
for collision is evaluated. If the necessary condition is not satis-
fied then the two bodies are not capable of collision. If the nec-
essary condition is satisfied then a collision between the bodie
may occur and we proceed to the next stage of the algorithm. In
the second stage the bodies are modelled with finite length cylin
ders and a definitive necessary and sufficient collision detection
algorithm is employed. The result is a straight-forward and effi-
cient means of detecting collisions of cylindrically shaped bodies
moving in three dimensions. This methodology has applications
in spatial mechanism design, robot motion planning, workspace
analysis of parallel kinematic machines such as Stewart-Goug
platforms, nuclear physics, medical research, computer graphic
and well drilling. A case study examining a spatial 4C robotic
mechanism for self collisions is included.

INTRODUCTION
In this paper we present an algorithm for determining quanti-

tatively if two bodies moving in three dimensional space collide.
∗Address all correspondence to this author.
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The methodology presented consists of two stages. In the first,
infinite length cylinders are used to model the objects, then line
geometry is used to determine if the cylinders intersect. If these
infinite cylinders do not intersect then the two bodies do not col-
lide and no further testing is required. If the two infinite cylinders
do intersect then further testing is necessary. We proceed to the
second stage where cylinders of finite length are used to model
the objects and they are tested to determine quantitatively if they
collide.

Collision detection is vital for real world implementation of
three dimensional mechanical systems such as robots, mecha-
nisms, parallel kinematic machines, and linkages. Collision de-
tection assists in motion planning, digital prototyping and motion
simulation of the system. For motion planning applications col-
lision detection can be used to verify that the planned motion of
the system is collision-free with respect to the working environ-
ment and self-collisions. The methodology presented here en-
ables the user to model the system and determinewithout risking
hardwareif there is a possible collision. Three dimensional me-
chanical systems can be difficult and expensive to develop hence
such modelling and testing of the system in the early stages of
design may save time and reduce costs. Often, complex systems
are digitally prototyped and simulated. These simulations are
improved by including motion planning and collision detection.

The methodology presented here is general and can be used
to detect collisions between any rigid bodies moving in three di-
mensions provided that the bodies are predominantly cylindrical
Copyright c© 2005 by ASME



in shape. We focus upon such bodies because this shape is co
monly found in industrial robots, parallel kinematic machines
(e.g. Stewart-Gough platforms), and spatial mechanisms. O
primary motivation for this work comes from our efforts to ad-
vance the state of the art in spatial mechanism design. Spat
mechanisms are closed kinematic chains consisting of rigid link
connected by cylindric(C), revolute(R), or prismatic(P) joints.
Traditionally, the links of these mechanisms are cylindrical in
shape. Recently, there have been some significant efforts ma
to address the challenge of designing useful spatial mechanism
In [9] Larochelle presented a Burmester Theory based compute
aided design program for spatial 4C mechanisms. Efforts we
made to address circuit and branch defects in [8]. Approximat
motion synthesis was addressed by [10] and [2]. The exploratio
of utilizing virtual reality techniques to address the inherent visu
alization and interaction challenges was reported in [7] and [11

The goal here was to facilitate the design of spatial 4C ro
botic mechanisms by assisting in the selection of a mechanis
that is free of collisions, including self-collisions. For collision
detection, cylinders are used to model all objects that need
be analyzed. Cylinders are useful modelling tools since mo
three dimensional mechanical systems consist of some combin
tion of prismatic, revolute, and cylindric joints. With respect to
the specific case of spatial 4C robotic mechanisms, traditional
the links are cylindrical in shape. For the first stage of testing
infinite length cylinders are used to model the links. This allows
us to employ line geometry to yield a fast and efficient mean
of determining if a collision is possible. If the infinite cylinders
do intersect then the actual finite cylinders may in fact collide
Therefore, we proceed to the second stage of the collision d
tection algorithm where finite length cylinders are used to mode
the links. Then these cylinders are tested rigorously for possib
collisions.

The paper proceeds as follows. First, the distance calcul
tions between infinite cylinders, then finite length cylinders are
presented. The necessary kinematic analysis of the spatial 4
mechanism are performed. Next, utilizing the distance calcula
tions and the results of the spatial 4C analysis, we determine
a collision occurs for a spatial 4C mechanism. Finally, a cas
study for the self collision detection of a spatial 4C mechanism
is presented.

Related Works
Collision detection is vital for real world implementation

of three dimensional systems such as spatial mechanism d
sign, mobile and autonomous robot motion planning, workspac
analysis of parallel kinematic machines such as Stewart-Goug
platforms, nuclear physics, computer graphics, well drilling
Mars rovers and medical research. Collision detection assists
motion planning, real-time control, digital prototyping and mo-
tion simulation of these systems.
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Zsombor-Murray [18] presents the visualization of the short-
est distance between two lines in space. His constructive geom-
etry and algebraic solutions to the problem motivated the work
proposed here. [17] correctly states that failure to detect a colli-
sion is less acceptable than false positives, which can be further
checked and that for the sake of speed exact or accurate collision
detection is often sacrificed.

Collisions are unacceptable and being able to detect and
avoid them is of vital interest. A great amount of prior work has
been done on the collision detection problem that has resulted in
the developed of many software packages such as: VEGAS, V-
Clip, RAPID, SOLID, I-Collide, V-Collide and PQP. They vary
in their modelling and in mathematical method for determining
if a collision has occurred.

Virtual Environment for General ASsembly (VEGAS) [22]
is a fully immersive virtual environment that permits the user to
explore various assembly situations. It uses triangles whose ver-
tices can be added together to generate polygons. The polygons
are transformed into small cubes (voxels) to model the entire en-
vironment so that their Voxmap PointShell method (VPS) can be
utilized. VPS uses surface normals to calculate reaction forces to
determine if a collision has occurred. VPS was designed for fast,
not accurate collision detection.

Voronoi Clip (V-Clip) [20] uses convex polyhedrons to
model the system and then tracks each polyhedrons features (ver-
tices, edges and faces). V-Clip tracks the closest features be-
tween each pair of polyhedrons. Knowing which feature is clos-
est makes calculating the distance between them easy. It uses
existing libraries (Qhull) to build its hierarchies of convex poly-
hedrons.

RAPID [20] is based on two different algorithms that uses
Oriented Bounding Boxes (OBBs) to model the system. The first
uses a top-down decomposition technique that builds an OBB hi-
erarchy or OBBtree. The second one tests for collisions between
the OBB pairs. It tests if the higher level OBBs overlap which
indicates a possible collision and the next lower level needs to be
tested. RAPID uses fifteen simple axis projection tests to deter-
mine if a collision has occurred.

Similarly, SOLID [20] also uses two algorithms for it’s col-
lision detection methods. First, it creates a bounded hierarchal
volume composed of Axis-Aligned Bounding Boxes (AABB).
Second, it computes the distance between two convex polytypes
using the Minkowski difference and convex optimization tech-
niques.

I-Collide [19] also uses a two-level approach for collision
detection. It is based on a model comprised of multiple levels of
bounding boxes. I-Collide removes object pairs from the model
using exact collision testing between the pairs of polyhedra. It
tracks the closest points between the pairs of convex polytypes.
It can also create a convex polytype model tree for non-convex
objects.

V-Collide [21] uses two existing collision detection libraries.
2 Copyright c© 2005 by ASME



Initially it uses I-Collide to determine the possible collisions
among a large number of objects. It then uses RAPID to perform
pairwise testing to determine if a collision has actually occurred

PQP [20] creates a hierarchy of Rectangle Swept Sphere
(RSS), volumes covered by a sphere whose center is swept ov
a 3D rectangle. It uses a specialized algorithm to improve th
efficiency and robustness of the distance calculations. Distanc
calculations are performed between the RSSs on the hierarch
tree.These general methods are computationally intensive whe
compared to the algorithm presented here.

Although spatial 4C robotic mechanisms are capable of spa
tial motion, i.e. motion in three dimensions, their motion is con-
strained to a complex three dimensional surface so traditiona
methods of path planning (e.g. [1]) do not apply. Similarly, sin-
gular configurations can be easily identified during the testing
phase and can be avoided during implementation [13]. Path ver
fication [16] and reachable space methods [6] do not apply for th
self collision problem since the envelope of the mechanism doe
not take into account self collisions. There are several method
available to calculate the data necessary for the two step anal
sis that is proposed in this paper. The relatively low number o
points and vectors necessary used do not warrant using vect
bundles [15].

COLLISION DETECTION
Infinite Cylinder Testing

Here we use infinite and finite length cylinders to model
rigid bodies in three dimensions. Initially, each object is mod-
elled by a cylinder of infinite length and finite radius. Infinite
cylinders are simple models to check for collisions since they
can be represented as a line in space with a radius. The short
distance between two lines in space is along their common no
mal line N. An advantage of using cylinders is that their common
normal line has a finite line segment between the two cylinder
and by subtracting the two cylinders radii from the segment, pos
sible collisions can be detected. If the distance between the tw
cylinders is less than the sum of their two radii then the infinite
cylinders have collided. Hence, if the actual finite cylindrical
objects have collided it isnecessarythat the minimum distance
between their associated infinite cylinders be less than the su
of their radii.

The major axis of an infinite cylinder is a line. Here, we use
Plücker coordinates and dual vectors to represent these lines
space. Pl̈ucker coordinates define a line by its unit directional
vector and moment. Moreover, when convenient, we emplo
dual vector algebra to operate on lines. The Plücker coordinates
of a line can be generated from two points on the line or from a
point and direction vector (see fig. 1). For example lineS1 can
be defined by points~c and~f or point~c and direction vector~s (see
eqs. 1 and 2).
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Figure 1. Infinite Cylinders

S1 =
( ~f −~c

‖~f −~c‖ ,~c×
~f −~c

‖~f −~c‖
)

(1)

= (~s,~c×~s)

S2 =
( ~g− ~d

‖~g− ~d‖
, ~d× ~g− ~d

‖~g− ~d‖
)

(2)

= (~w, ~d×~w)

We use the dual vector representation of the lines and dual vector
algebra as follows [4] and [12] whereε2=0.

Ŝ1 = (~s,~c×~s) (3)

= (a,a0)
= a+ εa0

Ŝ2 = (~w, ~d×~w) (4)

= (b,b0)

= b+ ε~b0

Line dot product:

Ŝ1 · Ŝ2 = (a,a0) · (b,b0) (5)

= (a·b,a·b0 +b·a0)
= a·b+ ε(a ·b0 +b·a0)
= cosθ− εdsinθ
= cosθ̂
Copyright c© 2005 by ASME



Line cross product:

Ŝ1× Ŝ2 = (a,a0)× (b,b0) (6)

= (a×b,a×b0 +a0×b)
= a×b+ ε(a×b0 +a0×b)
= (sinθ+ εdcosθ)N̂
= sinθ̂N̂

whereN̂ is the common normal line tôS1 andŜ2.
The above operations are useful for calculating the distan

d and the angleθ between two lines. The resultant dual num
ber of the dot product of two dual vectors yields the angle an
distance between the two lines as long as they are not paralle
each other (see eq. 5). If thedsinθ term is not equal to zero, then
the lines do not intersect (d 6= 0) and are not parallel (sinθ 6= 0).
If dsinθ is equal to zero and thecosθ term does not equal one,
then the lines intersect (d=0) and are not parallel. If thecosθ
term of the dot product is equal to1 then the lines are parallel
and the resultant dual vector of the cross product will have a0
real component. The cross product’s dual component (dcosθ)
will be 0 when the lines are identical. If thedcosθ term is non-
zero then the distance, d, can be calculated. Figure 2 show
detailed flow chart of the infinite cylinder test procedure.

This is an efficient method of determining the distance be
tween the two lines and if a possible collision has occurred. If th
resulting distance is greater than the sum of the two radii then
collision is possible regardless of the length of the finite cylin
ders. If the result is not greater than the sum of the two radii the
a collisionmay haveoccurred and a finite cylinder model is used
in the next stage of the collision detection algorithm.

Finite Cylinder Testing
If a possible collision has been detected by the infinite cylin

der test then further testing is required to determine if an actu
collision has occurred. The model is modified from cylinders o
infinite length to cylinders of finite length. This changes the ap
proach from testing lines to testing line segments. The same id
applies that the shortest distance between the cylinders is th
common normal but the point where the common normal inte
sects the cylinder’s axis becomes important. Figure 3 shows
detailed flow chart of the initial testing of the finite cylinders.

Parallel Testing From the initial testing, the angleθ be-
tween the infinite cylinders is known. If the finite cylinders are
parallel then there are two general cases: their associated
segments overlap in some manner or there is no overlap. To
termine if the segments overlap the plane that is orthogonal to t
lines and passes through one endpoint is determined. The in
section point of this plane with the other line is computed. Th
4
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Figure 2. Infinite Cylinder Testing

point is then tested to see if it is on the line segment or not. This
is repeated for up to two other endpoints (a fourth endpoint being
redundant) to test for overlapping. When no overlapping occurs,
no collision is possible.

Non-Parallel Testing To facilitate the testing of the
non-parallel finite cylinders we require that the angle between
their axes be acute. If the angle is not acute, then the endpoints
of the second finite cylinder are interchanged guaranteeing that
the angle between the axes is acute.

The shortest distance between two non-parallel lines is along
their common normal. We begin by determining where the com-
mon normal line intersects the axis of each cylinder. The axes
are described by their endpoints (~c and~d) andnon-unit direction
vectors (~s and~w), where‖~s‖ and‖~w‖ are equal to the length of
their corresponding cylinder (see fig. 4). The common normal
Copyright c© 2005 by ASME



Figure 3. Finite Cylinder Testing

line N intersects the linesS1 and S2 at points~p and~q respec-
tively. Parametric equations for points~p and~q of linesS1 andS2

are:

~p = ~c+ t1~s (7)

~q = ~d+ t2~w

where

t1 =
[(~d−~c)×~w] ·~n

~n·~n
t2 =

[(~d−~c)×~s] ·~n
~n·~n

and

~n = ~s×~w

Next for each cylinder we need to determine the test poin
along it’s axis, within the finite cylinder, that is closest to the
common normal line. These test points are referred to asTP1

andTP2. Then we determine if common normal points,~p and~q,
are on the segments, before the segments or after the segme
5
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Figure 4. Finite Cylinders

If t1 ≤ 0 then~p lies at the start of the segment or earlier, so the
start point of the cylinder is used asTP1. If t1 ≥ 1 then~p lies at
the end of the segment or further, so the end point is used asTP1.
If 0 < t1 < 1 then~p lies on the line segment so~p can be used as
TP1. The above procedure is repeated for cylinder 2 to determine
TP2.

From the determination of whether points~p and~q lie on or
off the cylinders there are three possible cases to consider. If
0≤ ti ≤ 1, wherei = 1,2, both~p and~q lie on the segments and
On-On testing is necessary. If either but not both~p and~q lie on
the segments, On testing is necessary. If neither~p nor~q lie on
the segments, Off testing is necessary. These cases are discussed
below.

Case 1 - On-On Testing The distance between the test
points can be compared to the sum of the radii of the cylinders
to determine if a collision has occurred. No further testing is
required.

Case 2 - On Testing Figure 5 shows a detailed flow
chart of the finite cylinder On test procedure. If only one cylinder
is On, the testing requires that it is cylinder 1. If it is cylinder 2
that is On, all cylinder 1 and 2 data is swapped. Next, we find
the closest point along cylinder 1’s axis toTP2 (see fig. 6). This
point, ~p1, is the intersection of linesS1 andN1 (N1 is orthogonal
to S1 and passes throughTP2). Calculating~p1 (see eqs. 8) yields
t3 which is used to determine if~p1 lies on or off the cylinder. If
the distance fromTP2 to ~p1 is greater than the sum of the radii
then no collision is possible and no further testing is required.
Copyright c© 2005 by ASME



Otherwise, we must determine if~p1 lies on or off cylinder 1. If
the distance from the closest end of cylinder 1 to~p1 is less thanr2

then further testing is required. The closest point (TP′2) of cylin-
der 2 to cylinder 1’s axis is on the circular end of cylinder 2.TP′2
can be found by addingr2 in the~n direction toTP2 (see eqs. 9).
TP′2 is on cylinder 2’s end circle. Next, we find the closest point

along cylinder 1’s axis toTP′2. This point,~p′1, is the intersection
of lines S1 and N′

1 (N′
1 is orthogonal toS1 and passes through

TP′2). Calculating~p′1 (see eqs. 10) yieldst ′3 which is used to de-

termine if ~p′1 lies on or off the cylinder. If bothp1 and p′1 lie
off cylinder 1 then no collision is possible and no further testing
is required. If onlyp1 lies on cylinder 1 then the ends of the
cylinders may intersect (see fig. 7) and end intersection testin
(discussed below) is required. If onlyp′1 lies on cylinder 1 (see
fig. 8) or bothp1 andp′1 lie on cylinder 1 then the distance is cal-
culated fromTP′2 andp′1. If the distance is less than cylinder 1’s
radius a collision has occurred. If it is greater then no collision i
possible.

~p1 = ~c+ t3~s (8)

~s· ~p1 = ~s·TP2

TP′2 = TP2 + r2~n (9)

~n =
~p−~q
‖~p−~q‖

~p′1 = ~c+ t ′3~s (10)

~s· ~p′1 = ~s·TP′2

Case 3 - Off Testing Figure 9 shows a detailed flow
chart of the finite cylinder Off test procedure. This case has mu
tiple test points that need to be tested. For each point, it us
the same testing as the On case. The distance fromTP2 to S1 is
found. If the distance is greater than the sum of the radii then n
collision is possible sinceTP2 is the closest point on cylinder 2
to cylinder 1 thus completing cylinder 2 testing. If the distance
is not greater than the sum of the radii then On testing must b
performed. Additionally, the other end of cylinder 2 must be sim
ilarly tested. The cylinder data is swapped and the Off testing
repeated with the new data.

End Testing Figure 10 shows a detailed flow chart of the
finite cylinder end test procedure. End cylinder testing is nece
sary when the circular ends of the cylinders may intersect (se
fig. 11). It is possible for the test points, when the projection
are added, to project on or off the cylinder. When this occurs it i
necessary to check if the cylinder ends intersect resulting in a co
lision. The approach used to test for collisions uses the distan
6
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Figure 5. On Testing

from the line that is the intersection of the planes of the cylinder
ends to the test points. The first step is to find the equations of
the planes,π1 andπ2, that are orthogonal to each cylinder’s axis
and pass through their test points (see eqs. 11).

π1 : ~s·



x
y
z


 =~s·TP1 (11)

π2 : ~w ·



x
y
z


 = ~w ·TP2

Then the parametric equation for the line of intersectionM
of π1 andπ2 is found (see eq. 12). This is done by setting ei-
ther x, y or z= 0 and solving simultaneously for the remaining
components.
Copyright c© 2005 by ASME



Figure 6. On Testing Labels

Figure 7. Projecting Off

Figure 8. Projecting On
Figure 9. Off Testing

M =




X
Y
Z


 =




x
y
z


+ t~m (12)

Next the distance fromTP1 to M is set tor1 to obtain a quadratic
in t4:

r2
1 = ‖M−TP1‖ (13)

r2
1 = ‖




x
y
z


+ t4~m−TP1‖

0 = t2
4(m2

x +m2
y +m2

z)+
t4(2mx(x−TP1x)+2my(y−TP1y)+2mz(z−TP1z))+

((x−TP1x)2 +(y−TP1y)2 +(z−TP1z)2− r2
1)

Similarly, t5 can be found by setting the distance fromTP2
7 Copyright c© 2005 by ASME



Figure 10. End Testing

to M asr2 (see eqs. 14).

r2
2 = ‖M−TP2‖ (14)

r2
2 = ‖




x
y
z


+ t5~m−TP2‖

0 = t2
5(m2

x +m2
y +m2

z)+
t5(2mx(x−TP2x)+2my(y−TP2y)+2mz(z−TP2z))+

((x−TP2x)2 +(y−TP2y)2 +(z−TP2z)2− r2
2)

If the quadratic yields complex roots then the cylinder en
circle and the lineM do not intersect and no collision is possible
Repeated roots from the quadratic formula mean that the cylind
end circle is tangent to the lineM and no collision has occurred.
If both roots are real then a range is found fort4 andt5. If the t4
andt5 ranges overlap then a collision has occurred.

THE SPATIAL 4C ROBOTIC MECHANISM
A spatial 4C robotic mechanism has four cylindrical joints

each joint permitting relative rotation and translation along a lin
(see fig. 12). The frame’s axes are color coded red, green, a
blue to correspond with the local XYZ axes. The link parame
ters that define the mechanism are listed in table 1 and the jo
8
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Figure 11. Cylinder End Overlap

Table 1. Common Normal & Link Parameters of the 4C Mechanism

Link Dual Angle Twist Length

Driving α̂ α a

Coupler η̂ η h

Driven β̂ β b

Fixed γ̂ γ g

variables are defined in table 2.
The spatial 4C mechanism may be viewed as a combination

of two CC dyads. The driving CC dyad has four independent
joint variables, referred to asθ, d1, φ andc1. The driven dyad
also has four independent joint variables,ψ, d2, δ andc2. When
adjoined by the coupler link, the two dyads form a closed chain
spatial 4C mechanism with two degrees of freedom. We chose
θ andd1 to be the independent joint variables. Note thatφ and
c1 as well as the driven dyad’s joint variables are now explicit
functions ofθ andd1 and these functions are found below.

4C Robotic Mechanism Analysis
We now present the equations that define the relative move-

ment for the links of a spatial 4C mechanism given its physical
dimensions and the input variables,θ andd1. The closed chain
vector loop equations were solved to yield the following equa-
tions, [9] and [3].

The coupler angleφ is a function of the input angleθ (see
eqs. 15).
Copyright c© 2005 by ASME



Figure 12. 4C Spatial Mechanism

Table 2. Moving Axes & Joint Variables of the 4C Mechanism

Joint Axis Dual Angle Rotation Translation

Fixed θ̂ θ d1

Driving φ̂ φ c1

Coupler δ̂ δ c2

Driven ψ̂ ψ d2

φ(θ) = arctan

(
B
A

)
±arccos

(
C√

A2 +B2

)
(15)

A = sin(η)sin(γ)cos(α)cos(θ)−
sin(α)sin(η)cos(γ)

B = −sin(η)sin(γ)sin(θ)
C = cos(β)−cos(η)sin(α)sin(γ)cos(θ)−

cos(α)cos(η)cos(γ)

Note thatφ has two solutions corresponding to the two assem-
blies or circuits of the mechanism.

The output angleψ is a function of the input angleθ and the

9

coupler angleφ (see eqs. 16).

ψ(θ,φ) = arctan

(
B
A

)
(16)

A =
1

−sin(β)

{
cos(η)(cos(α)sin(γ)−

cos(γ)cos(θ)sin(α))−
sin(η)cos(φ)(cos(α)cos(γ)cos(θ)+
sin(α)sin(γ))+

sin(η)cos(γ)sin(φ)sin(θ)
}

B =
1

sin(β)

{
cos(η)sin(α)sin(θ)+

sin(η)cos(θ)sin(φ)+

sin(η)cos(α)cos(φ)sin(θ)
}

The output coupler angleδ, i.e. the angle between the cou-
pler and driven crank is a function of the input angleθ and the
output angleψ (see eqs. 17).

δ(θ,ψ) = arctan

(
B
A

)
(17)

A =
1

sin(η)

{
cos(α)

(
cos(γ)sin(β)+

cos(β)sin(γ)cos(ψ)
)−

sin(α)cos(θ)
(

cos(β)cos(γ)cos(ψ)−
sin(β)sin(γ)

)−
sin(α)cos(β)sin(θ)sin(ψ)

}

B =
1

−sin(η)

{
cos(α)sin(γ)sin(ψ)+

sin(α)sin(θ)cos(ψ)−
sin(α)cos(γ)cos(θ)sin(ψ)

}

The driving coupler translationc1, the translation along the
driving axis, is a function ofθ, ψ, δ and the input translationd1

(see eqs. 18).

c1(θ,ψ,δ,d1) =
A
B

(18)

A = d1sin(γ)sin(ψ)+acos(θ)cos(ψ)
+acos(γ)sin(θ)sin(ψ)+hcos(δ)
−b−gcos(ψ)

B = sin(η)sin(δ)

Copyright c© 2005 by ASME



,

The driven coupler translationc2, the translation along the
driven axis, is a function ofθ, φ, ψ and the driving coupler trans-
lationc1 (see eqs. 19).

c2(θ,φ,ψ,c1) =
A
B

(19)

A = hcos(φ)cos(θ)+c1sin(α)sin(θ)+acos(θ)
−hcos(α)sin(φ)sin(θ)−g−bcos(ψ)

B = sin(β)sin(ψ)

Finally, the translation along the driven axisd2 is a func-
tion of θ, φ, ψ, the driving coupler translationc1 and the driven
coupler translationc2 (see eqs. 20).

d2(θ,φ,ψ,c1,c2) =
A
B

(20)

A = hcos(φ)sin(θ)−c1cos(θ)sin(α)
+asin(θ)+hcos(α)cos(θ)sin(φ)
−bcos(γ)sin(ψ)+c2cos(β)sin(γ)
+c2cos(γ)cos(ψ)sin(β)

B = −sin(γ)

MECHANISM COLLISION TESTING
Here we adapt the general methodologies of section 2 to

study of spatial closed chain mechanisms, specifically, the spat
4C robotic mechanism.

Part 1: Analyzing Mechanism Via Points
Our implementation of the collision detection algorithm pre-

sented here requires a set of via points, the constant paramet
(α, β, γ, η, a, b, g, h) and the radii of each of the links of a spatia
4C mechanism. The set of via points contains the input value
for θ, d1, number of incremental steps to the next via point, and
which solution to use forφ. From this given information several
tests can be performed to see if the mechanism is unsatisfacto

Each via point’s theta value can be tested to make sure th
it is within the allowable motion range of the mechanism. The
allowable motion range can be calculated using the link twis
angles of the mechanism (see eqs. 21) [14].

C1 =
cos(η−β)−cos(α)cos(γ)

sin(α)sin(γ)
(21)

C2 =
cos(η+β)−cos(α)cos(γ)

sin(α)sin(γ)
−1 < C1,C2 < 1

This gives four possible cases of solutions sets (see fig. 13):
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Figure 13. Input Theta Range

Case 1. NeitherC1 norC2 are within the allowable range so
the input link is capable of full rotation.
Case 2. Onlyθ1 = arccos(C1) exists, then the input link
rocks acrossπ from±θ1.
Case 3. Onlyθ2 = arccos(C2) exists, then the input link
rocks across 0 from±θ2.
Case 4. Bothθ1 = arccos(C1) and θ2 = arccos(C2) are
within the allowable range. The input link can rock in two
ranges, betweenθ1 and θ2 and−θ1 and−θ2 not passing
through 0 orπ.

Using the above equations the allowable ranges forθ can
be determined. If any of the via point’sθ values are not in the
allowable range, the mechanism is not satisfactory.

In addition, each via point’sd1 can be checked for a sign
change or if it approaches zero. Currently, the spatial 4C mech-
anisms designed by SPADES and VRSpatial use the common
normal to connect each link’s collar to its axis. If the sign of
d1 changes or if it nears zero a collision will occur between the
driving link’s collar and the fixed link’s common normal.

Similarly, theφ solution set can be inspected. Theφ solu-
tion set is passed in as part of the via points.φ has two solu-
tion sets and the remaining calculations are based on only one of
the sets for the mechanism to be acceptable. If the set changes
the mechanism changes circuits and/or moves through a singular
configuration.

Part 2: Infinite Line (Cylinder) Generation
The first step in testing the mechanism for a possible col-

lision is generating the Plücker coordinates of its axes at each
Copyright c© 2005 by ASME



Table 3. Mechanism Axes Parameters

Frame Axis Rotation Translation

1
2T z θ d1

2
3T x α a

3
4T z φ c1

1
8T x γ g

8
7T z ψ d2

7
6T x β b

6
5T z δ c2

incremental step. We assign right-handed frames to the mech
nism that translate and rotate along and about only the local
and Z axes (see fig. 12). The frames are attached at the int
section of the link segments and are aligned such that either its
or Z axis is collinear with the link’s direction vector. This kine-
matic analysis uses standard homogeneous transformations t
are translations or rotations with respect to a single local axis (
or Z). Each homogeneous transformation contains the point o
the line (~p) and its direction vector (either~X or~Z).

i−1
i T =




~x ~y~z ~p

0 0 0 1


 (22)

The closed chain mechanism is modelled as two open kine
matic chains fixed at frame 1 that are linked by the coupler’
common normal segmenth. Note that the distance between1

4~p
and1

5~p is h) (see eqs. 23). The Plücker coordinates of the moving
axes are obtained from the matrices1

4T and1
5T:

1
4T = 1

2T2
3 T3

4 T (23)

= Z(θ,d1)X(α,a)Z(φ,c1)
1
5T = 1

8T8
7 T7

6 T6
5 T

= X(γ,g)Z(ψ,d2)X(β,b)Z(δ,c2)

where,

[X(θ,x)] =




1 0 0 x
0 cosθ −sinθ 0
0 sinθ cosθ 0
0 0 0 1



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[Z(θ,z)] =




cosθ −sinθ 0 0
sinθ cosθ 0 0

0 0 1 z
0 0 0 1




Each frame is located by the homogeneous transformation
matrices in space. This permits the use of line geometry and
dual number algebra to calculate the distance between the infinite
length axes to determine if the mechanism may have experienced
a collision. Any axes pair that a collision may have occurred in
is written to a file. The file contains the information necessary to
test the axes pair that will be modelled and tested as finite length
cylinders. The data necessary for identifying the test to be per-
formed is the input values ofd1, θ and the segment numbers that
may have collided. Section 5 discusses techniques for minimiz-
ing the number of tests required at each step to test completely
for self collisions.

Part 3: Determining Maximum Length of each link’s
moving axis

The links of a spatial 4C robotic mechanism can be modelled
by a closed chain of eight line segments defined by twelve points
(see fig. 14). Each of the four links are described by three points:
one at the center of the link’scollar, theelbowat the intersection
of the link’s common normal with its axis, and theend at the
opposite end of its axis. Although each link’s collar is co-linear
with the previous link’s axis, separate points are required for it
and for the end of the moving axis.

We assume that each link axis is rigid and that its length will
be sized accordingly. Hence, it is necessary to find the maxi-
mum length of each link’s axis for the desired motion. To do
this we use linear interpolation of theθ andd1 via points to yield
a discretized representation of the desired motion. At each dis-
crete point we perform a kinematic analysis of the mechanism
via Section 3. Finally, the minimum and maximum values ofc1,
d2, andc2 are identified. These lengths are used to define the
lengths of the finite cylinders that are used to model the link axes
for collision detection.

Part 4: Finite Line (Cylinder) Generation
The next step in testing the mechanism is generating the seg-

ment endpoints for each of the possible collision segments saved
and identified during the infinite length cylinder testing. For each
linear interpolation ofθ andd1 of the mechanism, the endpoints
of any segment can be generated by using the above kinematic
analyses. The end of each link has to be generated differently
for each chain (see fig. 15). For the driving chain we substitute
d1max for d1 andc1max for c1 to obtain the three dimensional co-
ordinates of the end point (see eqs. 24 and 25). However, the
driven chain measures the translations in the opposite direction
Copyright c© 2005 by ASME



Figure 14. Point Designation

from collar to elbow instead of from elbow to collar. This re-
sults in the end point being in the opposite direction of the elbow
relative to the collar (except when the translation is at its max
imum/minimum). This makes the translation of the point, for
example,c2 - c2max (see eq. 25).

[
DrivingEnd

1

]
= 1

4maxT




0
0
0
1


 (24)

= Z(θ,d1)X(α,a)Z(φ,c1max)




0
0
0
1




[
CouplerEnd

1

]
= 1

5maxT




0
0
0
1


 (25)
12
-

Figure 15. Link Length Definitions

Table 4. Segment Designations of the Spatial 4C Mechanism

Segment No. Start Point End Point

1 Fixed Elbow Fixed End

2 Driving Collar Driving Elbow

3 Driving Elbow Driving End

4 Coupler Collar Coupler Elbow

5 Coupler Elbow Coupler End

6 Driven Collar Driven Elbow

7 Driven Elbow Driven End

8 Fixed Collar Fixed Elbow

= X(γ,g)Z(ψ,d2)X(β,b)Z(δ,c2−c2max)




0
0
0
1




For each incremental step the twelve points can be calcu-
lated and the eight line segments generated. The segments are
numbered starting with the fixed link’s axis, proceeding around
the closed chain, and ending with the fixed link’s common nor-
mal (see tbl. 4). This yields the set of line segments for the in-
cremental step that can then be tested to see if a collision has
occurred.
Copyright c© 2005 by ASME



Table 5. Case Study - Link Parameters

Dual Angle Twist (degrees) Length (unit)

α̂ α = 65 a = 100

β̂ β = 35 b = 80

γ̂ γ = 45 g = 70

η̂ η = 30 h = 90

Table 6. Case Study - Motion Input

θ (degrees) d1 (unit) Increments ±φ

6 100 50 +

-12 80 50 +

-27 100 60 +

-8 110 60 +

3 60 30 +

CYLINDER TESTING LOGIC
It is necessary that for each incremental step every cylind

is tested for possible collisions. Since speed is important for th
calculations, we look to reduce the number of tests that must
run for each incremental step. First, cylinders can not collid
with themselves since they are rigid links. Testing cylinder 1 fo
a collision with cylinder 5 is redundant to checking cylinder 5
to cylinder 1. This greatly reduces the number of tests require
The number can be further reduced by observing the design
the mechanism. In a spatial 4C robotic mechanism it is not po
sible for a cylinder to collide with it’s adjacent cylinders. This
reduces the number of possible cylinder combinations in a sp
tial 4C robotic mechanism to twenty.

CASE STUDY
To demonstrate the methodology presented in this paper w

used the spatial 4C mechanism described in Table 5. The me
anism’s fixed link is grey, driving link green, driven link red and
coupler link blue (see fig. 16). Each link’s common normal wa
assigned a radius of five units and each axis a radius of twen
The axis was modelled as having a larger radius to account f
the collar that has to translate and rotate about the link’s axis.

A set of via points (see tbl. 6) was then entered for the mec
anism and some initial testing was performed. From the lin
twist values the allowable range ofθ was calculated (see eqs. 21)
and onlyC2 exists (case 3). This made the allowableθ range
78.863↔−78.863, rocking across 0 (see eqs. 26).
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Figure 16. Case Study: 4C Mechanism

C1 = 1.0882=⇒ θ1 does not exist (26)

C2 = 0.19315=⇒ θ2 = 78.863

After calculating the allowableθ range, each of the via points
was tested to make sure that they were within the same allowable
range.

The next step in testing the mechanism is to begin incremen-
tally moving the mechanism through it’s desired motion. At each
step, the first level of collision testing is performed using infinite
length cylinders that are calculated and tested for possible colli-
sions. If a possible collision is detected, the data that describes
the mechanism’s position and which lines may have collided are
written to a file. This case resulted in 767 instances when the infi-
nite length cylinders collided. Also during the incremental move-
ment the global translational minimums and maximums of the
mechanism are determined (see tbl. 7). Inspection of the mecha-
nism’s translations shows that there were no sign changes in the
individual translations and that none of them approach zero.

Next, the second level of testing, using finite length cylin-
ders, is performed on each of the possible collisions written to
the file. The result is that there was a collision detected. The col-
lision occurred between segments three and six whenθ =−2.28
and d1 = 90.80 (see tbl. 8). Figure 17 shows the mechanism
when it is in its collision configuration.
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Table 7. Case Study - Translation Output

Translation Min (unit) Max (unit)

d1 60.000 110.000

c1 122.344 234.576

d2 16.205 190.978

c2 34.786 190.747

Table 8. Case Study - Results

Distance (unit) Seg. No. Seg. No.θ (degree) d1 (unit)

-0.241 3 6 -2.28 90.80

Figure 17. Case Study: Collision Configuration

CONCLUSIONS
In this paper we have presented a novel methodology for de

tecting collisions of cylindrically shaped rigid bodies moving in
three dimensions. This algorithm uses line geometry and dua
number algebra to exploit the geometry of cylindrical objects to
facilitate the detection of collisions. First, the rigid bodies are
modelled with infinite cylinders and an efficient necessary con
dition for collision is evaluated. If the necessary condition is
14
-

l

-

not satisfied then the two bodies do not collide. If the necessary
condition is satisfied then a collision between the bodies may oc-
cur and we proceed to the next stage of the algorithm. In the
second stage the bodies are modelled with finite cylinders and a
definitive necessary and sufficient collision detection algorithm
is employed. The result is a straight-forward and efficient means
of detecting collisions of cylindrically shaped bodies moving in
three dimensions. This methodology has applications in spatial
mechanism design, robot motion planning, workspace analysis
of parallel kinematic machines such as Stewart-Gough platforms,
nuclear physics, medical research, computer graphics and well
drilling. A case study examining a spatial 4C robotic mechanism
for self collisions was included.
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